Surfactant-free, UV-curable core–shell microcapsules in a hydrophilic PDMS microfluidic device
نویسندگان
چکیده
منابع مشابه
Modeling of Oxygen-Inhibited Free Radical Photopolymerization in a PDMS Microfluidic Device
Free-radical photopolymerization performed within PDMS microfluidic devices is now used for a variety of applications. We propose, through model and experiment, that atmospheric oxygen diffusing in through the porous PDMS is responsible for the presence, under UV light, of a thin, un-cross-linked film of oligomer abutting the walls of an all-PDMS device. After the advent of light exposure, an i...
متن کاملReduced UV light scattering in PDMS microfluidic devices.
Microfluidic devices which consist of polydimethylsiloxane (PDMS) are used extensively for the production of polymer microparticles through the use of droplet templating and on-chip photopolymerization. However, in existing methods, spatial confinement of the photochemical droplet solidification is impaired by UV light scattering inside the PDMS elastomer. We present a technique to load PDMS mi...
متن کاملSynthesis of Bioactive Microcapsules Using a Microfluidic Device
Bioactive microcapsules containing Bacillus thuringiensis (BT) spores were generated by a combination of a hydro gel, microfluidic device and chemical polymerization method. As a proof-of-principle, we used BT spores displaying enhanced green fluorescent protein (EGFP) on the spore surface to spatially direct the EGFP-presenting spores within microcapsules. BT spore-encapsulated microdroplets o...
متن کاملAssembling magneto-plasmonic microcapsules using a microfluidic device.
Magneto-plasmonic microcapsules were prepared by the assembly of gold and γ-Fe(2)O(3) magnetic nanoparticles at the oil-water interface of microdroplets generated in a microfluidic device.
متن کاملA hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer.
Electrowetting (EW) is widely used in digital microfluidics for the manipulation of drops sandwiched between two parallel plates. In contrast, demonstrations of closed microfluidic channels enhanced with EW functionality are scarce. Here, we report a simple, low-cost method to construct such microchannels enclosed between two glass plates, each of which comprises electrodes and insulating layer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2020
ISSN: 2158-3226
DOI: 10.1063/5.0004736